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A B S T R A C T   

Caretakers tend to repeat themselves when speaking to children, either to clarify their message or to redirect 
wandering attention. This repetition also appears to support language learning. For example, words that are 
heard more frequently tend to be produced earlier by young children. However, pure repetition only goes so far; 
some variation between utterances is necessary to support acquisition of a fully productive grammar. When 
individual words or morphemes are repeated, but embedded in different lexical and syntactic contexts, the child 
has more information about how these forms may be used and combined. Corpus analysis has shown that these 
partial repetitions frequently occur in clusters, which have been coined variation sets. More recent research has 
introduced algorithms that can extract these variation sets automatically from corpora with the goal of 
measuring their relative prevalence across ages and languages. Longitudinal analyses have revealed that rates of 
variation sets tend to decrease as children get older. We extend this research in several ways. First, we consider a 
maximally diverse sample of languages, both genealogically and geographically, to test the generalizability of 
developmental trends. Second, we compare multiple levels of repetition, both words and morphemes, to account 
for typological differences in how information is encoded. Third, we consider several additional measures of 
development to account for deficiencies in age as a measure of linguistic aptitude. Fourth, we examine whether 
the levels of repetition found in child-surrounding speech is greater or less than what would have been expected 
by chance. This analysis produced a new measure, redundancy, which captures how repetitive speech is on 
average given how repeititive it could have been. Fifth, we compare rates of repetition in child-surrounding and 
adult-directed speech to test whether variation sets are especially prevalent in child-surrounding speech. We find 
that (1) some languages show increases in repetition over development, (2) true estimates of variation sets are 
generally lower than or equal to random baselines, (3) these patterns are largely convergent across develop-
mental indices, and (4) adult-directed speech is reliably less redundant, though in some cases more repetitive, 
than child-surrounding speech. These results are discussed with respect to features of the corpora, typological 
properties of the languages, and differential rates of change in repetition and redundancy over children’s 
development.   
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1. Introduction 

One of the unresolved questions of language learning is how infants 
can extract and generalize linguistic units from the speech to which they 
are exposed. A diverse and growing body of research has begun to tease 
apart what aspects of the input could impact language development, 
with evidence coming from naturalistic (e.g., Aguado-Orea, 2004; Hut-
tenlocher, Vasilyeva, Cymerman, & Levine, 2002; Krajewski, Lieven, & 
Theakston, 2012), experimental (e.g., Branigan & Messenger, 2016; 
Lieven & Stoll, 2013; Savage, Lieven, Theakston, & Tomasello, 2006; 
Vasilyeva & Waterfall, 2012), computational (e.g., Freudenthal, Pine, 
Aguado-Orea, & Gobet, 2007; Vogt & Lieven, 2010), and mixed- 
methodological studies (e.g., Naigles & Hoff-Ginsburg, 1998). Never-
theless, there are still large gaps in our understanding of how input to 
children is structured, and in particular how the input may differ cross- 
linguistically. 

Perhaps the most well-established link between input and acquisition 
is repetition. In general, languages are more repetitive than not (Hai-
man, 1997; Jakobson, 1966), and this repetitiveness has been shown to 
support language learning (Ambridge, Kidd, Rowland, & Theakston, 
2015; Bannard & Lieven, 2009; Bard & Anderson, 1983; Brown, 1999; 
Cameron-Faulkner, Lieven, & Tomasello, 2003; Hoff-Ginsberg, 1986, 
1990; Horst, Parsons, & Bryan, 2011). In fact, one of the best predictors 
of learning across levels of linguistic structure is pure frequency (e.g., 
Ambridge, Kidd, Rowland, & Theakston, 2015). For example, words that 
appear more often in the input are learned earlier (e.g., Braginsky, 
Yurovsky, Marchman, & Frank, 2016;Goodman, Philip, & Li, 2008). But 
frequency effects are also found beyond individual words. Repetition in 
multi-word contexts (contiguous or non-contiguous) offers reliable cues 
not only to word segmentation and meaning (e.g., Mikolov, Sutskever, 
Chen, Corrado, & Dean, 2013) but also to more general categories, such 
as word class (Cameron-Faulkner et al., 2003; Cartwright & Brent, 1997; 
Gómez & Maye, 2005; Mintz, 2003, 2006; Moran et al., 2018; Redin-
gton, Chater, & Finch, 1998; Santelmann & Jusczyk, 1998; Stoll, Abbot- 
Smith, & Lieven, 2009). Thus, repetition in the input provides multiple 
sources of information about the building blocks of language, and 
children appear quite able to incorporate this information during their 
early linguistic development. 

Repetition has a natural counterpart: variability. Assuming a large 
enough textual window, each instance of a given word will occur in a 
different context, i.e., language is non-stationary (see Jurafsky & Martin, 
2008: Ch. 12). Like repetition, variability has consequences for language 
processing and learning. For example, greater variability in the aggre-
gate contextual distributions of words has been shown to facilitate 
comprehension (e.g., ; Moscoso del Prado Martín, Kostić, & Baayen, 
2004) and acquisition (Lester, 2018; Waterfall, 2006), independent of 
pure frequency. Therefore, repetition and variability work hand in hand 
to support online processing in the short term and acquisition over the 
long term. The question is whether, and if so how speech to children is 
structured to support these pathways for learning. 

In the present study, we focus on one facet of child-directed speech 
that embodies both repetition and variability, namely variation sets 
(Küntay & Slobin, 1996). Variation sets are groups of partially repetitive 
utterances that are tightly clustered in time. Crucially, one or more 
words are repeated but in different morpho-syntactic contexts. Küntay 
and Slobin (1996) provide the following example:  

(1) Who did we see when we went out shopping today?  
Who did we see?  
Who did we see in the store?  
Who did we see today?  
When we went out shopping, who did we see?  

In this interaction a father prompts the memory of his child (aged 
2;3) through a number of consecutive utterances focusing on the same 
topic of speech. The verb see is repeated five times and embedded in five 
different syntactic contexts. 

Sequences like this one serve several purposes, each of which could 
support acquisition. For one, they orient and maintain the child’s 
attention on a circumscribed topic (here, the memory of seeing someone 
at the store). They also promote comprehension by including new in-
formation (the variable content) piecemeal in relation to a lexical or 
conceptual point fo stability. Finally, as Küntay and Slobin (1996) argue, 
they could help children to track lexical roots across variable morpho-
logical and syntactic structures, thereby providing abundant cues to the 
formal and functional properties of the repeated element. 

Waterfall (2006) explicitly tested whether the frequency of variation 
sets contributes to learning in a corpus of naturalistic adult-child in-
teractions. In line with the literature cited above, she finds that words 
that occur more frequently in variation sets are produced earlier by 
young children. Computational research further supports this finding. 
Frank, Tenenbaum, and Fernald (2013) find that repetition of object 
labels in successive utterances leads to reasonably reliable classification 
of the intended referent (hence acquisition of the form-meaning map-
ping) above and beyond other more obvious cues, such as eye gaze and 
pointing. Experimental work further supports facilitation of learning 
due to partial repetitions across successive utterances. Schwab and 
Lew-Williams (2016, 2017) find that young children only successfully 
acquire novel object labels when these labels are repeated in blocks of 
successive sentences. Compatible effects were reported by Onnis, 
Waterfall, and Edelman (2008) for adults in an artificial language 
learning paradigm. Participants were better at detecting word and 
phrase boundaries in a novel language when learning trials were 
grouped with some degree of repetition across adjacent stimuli. Finally, 
as also pointed out by Onnis et al. (2008), the compressed temporal 
profile of variation sets allows even memory-limited learners to compare 
and discover structure in their input. Taken together, these findings 
suggest that where variation sets are present, either naturally or through 
experimental manipulation, learning outcomes improve across a num-
ber of linguistic levels. 

But how prevalent are variation sets in speech? Presumably, for them 
to make a substantial impact on language acquisition, variation sets 
should appear in children’s earliest interactions with a fair degree of 
regularity. Recent advances in the computational literature have 
demonstrated that prevalence of variation sets can be reliably estimated 
using automatic extraction techniques. Once the variation sets are 
extracted, prevalence is typically defined as the proportion of utterances 
(out of all utterances in the sample) that belong to at least one variation 
set. Applying these techniques, several studies have found evidence of 
variation sets in child-directed speech sampled from many different 
languages (Grigonytė & Björkenstam, 2016; Hoiting & Slobin, 2002; 
Küntay & Slobin, 1996; Küntay & Slobin, 2002; Waterfall, 2006; Wirén, 
Kristina, Björkenstam, & Cortes, 2016). These techniques have also been 
used to examine how the prevalence of variation sets changes as children 
mature. Results from these studies show that the vast majority of lan-
guages show a decrease in the prevalence of variation sets as children 
grow older (the others showing no change over time; Grigonytė & 
Björkenstam, 2016; Wirén et al., 2016). The evidence thus points to a 
strong link between the child’s development and the caretakers’ use of 
repetition. In the early stages, the caretaker speech is more repetitive, 
which supports learning at a time when children manifest fewer signs of 
comprehension and/or productive ability. Over time, as the children 
become more proficient language users, the caretaker speech becomes 
less repetitive, making room for more varied, contentful, and efficient 
communication. 

It follows from this discussion that variation sets could be a universal 
feature of adult-child interactions, arising and subsiding in response to 
the evolving pressures of adult-child interaction, supporting acquisition 
all the while. However, the available evidence suffers from some 
shortcomings that must be addressed before we can draw such a bold 
conclusion. 

First, the sample of languages that have been explored so far has not 
been adequately controlled for cultural, geographic, and linguistic 
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diversity. Specifically, prior research has either (a) included only a small 
sample of languages, or (b) included a large sample of languages but 
failed to control for diversity of structural, genealogical, or areal factors. 
The identification or refutation of universals (or superabundant cross- 
linguistic tendencies) in language acquisition requires that the sample 
of languages approximate as closely as possible the full diversity of 
linguistic structures in human language (cf.) Stoll & Bickel 2013). Lan-
guages from the same language family are more likely to share linguistic 
features, as are unrelated languages in contact situations (e.g., within 
Sprachbunds). Genealogical and/or geographical affinities between 
languages tend to result in both cultural and typological similarities. 
This complex of factors could reasonably yield similar patterns of vari-
ation sets across languages in an under-diverse sample and so give a false 
impression of the generality of the phenomenon. This means that we 
need more languages, but also languages that have been carefully 
selected to control for genealogical and areal relationships. 

Second, prior work has typically relied on the similarity of full ut-
terances or individual words to identify variation sets. However, as 
Küntay and Slobin (1996) note, differences in the average morpholog-
ical complexity of words across languages present problems for cross- 
linguistic comparison. In analytic languages, searching for word repe-
titions is relatively straightforward. Take English for example. In (1), the 
verb see is repeated five times, but it has the same form each time; only 
the syntactic environment changes. By contrast, in morphologically 
complex languages, word forms themselves change more frequently and 
more radically. With such languages, utterance- or word-level matching 
might fail to detect repetition at the sub-lexical level. Consider the 
following example of two successive utterances from a Turkish mother 
to her 19-month-old daughter (Küntay & Slobin, 2002: 8; repeated el-
ements given in bold):  

(2) Bana odandan bi tane bebek getirebilirmisin?  
‘Can you bring me a doll from your room?’    

Getir.  
‘Bring.’  

In (2), no two words are repeated, but the concept ‘bring’ is. How-
ever, the first instance of getir ‘bring’ is suffixed with three markers 
(− ebilir MOD, − mi YN, and -sin 2S)1 while the second instance has no 
additional morphemes. The two sentences also differ in the syntactic 
context, as in (1). On the one hand, these sub-lexical relationships cause 
problems for algorithms that rely on word or utterance-level similarity 
metrics for identifying variation sets. On the other hand, if such algo-
rithms had access to the morphological parse, they would surely 
discover the obvious match for the verb root getir ‘bring’. 

Third, longitudinal studies of variation sets have only considered age 
as an index of the child’s development (e.g., Grigonytė & Björkenstam, 
2016). However, age may not always be the best measure of develop-
ment, particularly when comparing multiple corpora that span different 
age ranges (Stoll & Gries, 2009). Furthermore, each child follows a 
different developmental pathway over time. This means that specific 
ages – as well as age spans – may not correspond to the same periods of 
development across children, making any inference about global trends 
difficult. Fortunately, there exist several more targeted possibilities for 
measuring development, such as the mean length of utterance or lexical 
diversity. While none of these measures is without its difficulties, 
employing them all simultaneously allows us to look for convergent 
developmental trends. If changes in the prevalence of variation sets are 
replicated across developmental indices, then we would have stronger 
evidence that these changes are indeed tethered to increasing linguistic 
aptitude in the child. 

Fourth, the amount of repetition possible in any given language 
depends on the statistical properties of the lexicon (words or mor-
phemes). For example, a lexicon of two words in a corpus of 10,000 
tokens will be very repetitive, more so if the relative probability of one 
word stands at 90%. More importantly, the levels of repetition that have 
been reported in the literature could have arisen by chance, or could be 
much less substantial than they appear on the surface, given a smaller 
deviation from the expectations given the frequency distribution of 
word types. We propose to handle this issue by measuring how repetitive 
a text would be if it were randomly generated using the same underlying 
lexicon and frequency distribution. This value can then be compared to 
what we observe in the true text to determine (a) whether repetition is 
more or less than would be expected and (b) a more reasonable picture 
of the magnitude of the effect. 

Fifth and finally, the developmental trends that have been uncovered 
so far suggest that variation sets are in fact a special feature of adult- 
child interaction. However, no study to our knowledge has explicitly 
tested the behavior of other modes of discourse. For example, do vari-
ation sets also exist in adult-directed speech (ADS)? If ADS and CSS are 
equally repetitive, then the primary explanation for the presence of 
variation sets would be undermined. ADS thus provides a crucial base-
line. Moreover, it allows us to (a) judge the magnitude of the prevalence 
of variation sets relative to a natural standard (rather than random text) 
and (b) see whether the developmental trends gradually approximate 
this adult-directed standard, as expected given the available evidence 
and theory. 

The present study seeks to address each of these issues:  

• Sampling. The languages considered here were selected to maximize 
cross-linguistic diversity. Specifically, we analyze longitudinal 
corpora of seven languages from the ACQDIV database (Jancso, 
Moran, & Stoll, 2020; Moran, Schikowski, Pajović, Hysi, & Stoll, 
2016), as well as the Manchester corpus of British English (Theak-
ston, Lieven, Pine, & Rowland, 2001) from the CHILDES database 
(MacWhinney, 2000). The ACQDIV database contains several lan-
guages which have not yet appeared in the quantitative literature on 
variation sets, as well as new and larger samples of languages which 
have been studied before. We therefore expand the linguistic 
coverage of variation sets research while also providing a means for 
replication.  

• Morphological complexity. Repetition is measured both at the level 
of words and of morphological roots (i.e., roots shed of all gram-
matical markers). Results of the word-level and morpheme-level 
analyses are then compared across languages to see whether differ-
ences in morphological complexity demand different approaches to 
measuring repetition.  

• Developmental measures. Besides age, we consider two additional 
measures of development: mean length of utterance and lexical/ 
morphological diversity. We also derive a measure of the joint in-
formation carried by these three variables to get a more general 
picture of development.  

• Random baseline. Randomized versions of all of the corpora are 
generated and the proportion of variation sets re-estimated. These 
random estimates are then compared against the original estimates 
to determine whether variation sets are surprising at all, or whether 
they are simply unavoidable given the nature of the linguistic toolkit 
provided to speakers. This comparison also serves as a sanity check 
on the performance of our algorithm. If it cannot distinguish actual 
speech from random sequences of words, then perhaps the fault lies 
in our approach and not with the concept of variation sets generally.  

• ADS baseline. Variation sets are extracted from two ADS corpora for 
which we have corresponding samples in ACQDIV (English and 
Chintang). These estimates are then compared to what we find for 
CSS. Results inform us about whether variation sets are indeed a 
special feature of CSS or simply a natural part of human discourse. 

1 MOD = modality marker (in this case, essentially English ‘can’); YN = yes/ 
no question marker; 2 = second-person agreement marker. Conventions 
adapted from the source (Küntay & Slobin, 2002). 
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We proceed as follows. In the next section, we survey prior ap-
proaches to the automatic extraction and analysis of variation sets with a 
focus on methodology. Based on this survey, we outline our own com-
posite, highly flexible algorithm. The algorithm is applied to our sample 
of eight CSS corpora and two ADS corpora – as well as random versions 
of each – to derive estimates of the prevalence of repetition. The results 
are analyzed statistically. CSS data are analyzed longitudinally (based 
on several markers of the target child’s development). ADS data are 
analyzed cross-sectionally in comparison to binned versions of the CSS 
data. We discuss the results in light of the existing literature, and point to 
several directions for future research. 

2. Operationalization of variation sets in the literature 

Studies that have sought to extract variation sets automatically from 
corpora (e.g., Brodsky, Waterfall, & Edelman, 2007; Grigonytė & 
Björkenstam, 2016; Onnis et al., 2008; Waterfall, 2006; Wirén et al., 
2016) have used a number of diverse definitions and methods. Waterfall 
(2006) defines variation sets as sequences of utterances that (i) belong to 
the same conversational turn and (ii) relate to the same event, given that 
they share at least one verb or noun (excluding exact repetitions). She 
analyzes variation sets over time in a longitudinal study of English (12 
mother-child dyads with children aged 1;2–2;6).2 She finds that the 
proportion of utterances that belong to variation sets decreases from 
17% to 12% during the second year of life (1;2 to 2;6). While we cannot 
speak to the importance of such a modest decrease, it is nevertheless an 
indicator of the time-evolving nature of variation sets. Using the same 
definition of a variation set, Onnis et al. (2008) report an almost doubled 
rate of 27.9% in the Lara corpus (1;9–3;3 years; Rowland, Pine, Lieven, 
& Theakston, 2005; Rowland & Fletcher, 2006). In an additional anal-
ysis, they loosen the criteria for defining variation sets, including any 
single-word overlap (not just nouns and verbs). This approach yields 
58.6% of the utterances as part of variation sets. Further, they find that 
34.9% of word types surface in at least one variation set. 

Brodsky et al. (2007) use a slightly different definition of variation 
sets. They define variation sets as sequences of utterances with a lexical 
overlap of one or more elements in successive pairs of utterances (e.g., 
first–second, second–third). They allow a maximum of two intervening 
utterances and they exclude fillers, pronouns, auxiliaries, WH-questions, 
proper names and a set of function words. With this definition, Brodsky 
et al. (2007) reanalyze the data used by Waterfall (2006), resulting in 
21.5% of utterances being part of variation sets (twelve mother-child 
dyads with children aged 1;2–2;6). They further analyze 300,000 ut-
terances from the English component of the CHILDES database (Mac-
Whinney, 2000). They find that 18.3% of the words occur in variation 
sets. The divergent results obtained illustrate that differing definitions of 
variation sets and how they have been operationalized have an impact 
on how many variation sets are identified in a particular corpus. 

Wirén et al. (2016) define a variation set in a novel way. To identify 
variation sets in their Swedish corpus of parent-child interactions 
(Björkenstam & Wirén, 2014), they do stepwise comparisons of suc-
cessive utterance pairs using Ratcliff–Obershelp pattern recognition 
(Ratcliff & Metzener, 1988), thereby allowing for maximally two 
intervening dissimilar utterances within a certain similarity threshold. 
The Ratcliff–Obershelp algorithm computes the similarity of two strings 
by matching all characters and then dividing by the sum of the number 
of characters in the two strings. Matching characters start with the 
longest shared character subsequence between two strings and then 
recursively match shared subsequences on either side of it (Ratcliff & 
Metzener, 1988). First, they identify variations by hand in a corpus of 
Swedish child-directed speech to create a gold-standard database. They 

find that variation sets gradually decrease in number as the child gets 
older. Then they evaluate how well their automatic procedure aligns 
with the hand-annotated data. The algorithm achieves 0.56 (strict 
matching) and 0.82 (fuzzy matching) F-scores for the youngest age 
group, but performance decreases over time. Next, they apply the al-
gorithm to English, Croatian, and Russian, and find that across 4 age 
groups (0;7–0;9, 1;0–1;2, 1;4–1;7, 2;3–2;9) there is a decrease in the 
proportion of variation sets in the child-directed speech. The proportion 
of verbatim repetitions of utterances also decreases. 

Grigonytė and Björkenstam (2016) expand the approach by Wirén 
et al. (2016). They implement a novel method for variation set detection 
by combining two pairwise comparison strategies, called anchor and 
incremental, together with two algorithms for lexical distance compari-
sons (discussed in detail below): the Ratcliff–Obershelp pattern recog-
nition method and the Python module difflib, which is a library that 
provides string similarity measures, including edit distance (Levenshtein, 
1966). 

An illustration of the anchor method is given in Section 4.1 in Fig. 2. 
By contrast, incremental comparison simply involves stepwise compar-
ison of successive utterances, e.g., utterances 1–2, 2–3, 3–4, etc. 
Grigonytė and Björkenstam (2016) compare their results using these two 
approaches. Their open-source Varseta software achieves only low pre-
cision and recall figures when applied to the gold standard datasets of 
Swedish (Wirén et al., 2016) and French (Grigonytė & Björkenstam, 
2016).3 That is, F-scores perform relatively poorly across the board – 
regardless of the anchor or incremental stepwise analysis. The differ-
ences between these analyses also depended on the type of matching. 
The anchor method performed better for fuzzy matching, while the in-
cremental approach performed better for strict matching. However, the 
anchor method always outperformed the incremental method for the 
youngest age group (0;6–0;9), and the superior performance of the in-
cremental method for strict matching was negligible up until about two 
years of age (see Table 4 in Grigonytė & Björkenstam, 2016). 

Grigonytė and Björkenstam (2016) then apply Varseta to 26 corpora 
from the CHILDES database (MacWhinney, 2000) with the aim of 
investigating how the proportion of variation sets changes as children 
grow older. Given what has been described in the previous literature, 
they expected to find a decrease for all languages. Although they observe 
that the proportion of utterances belonging to variation sets indeed 
decreases for the majority of languages (19 out of 26), two sets of ex-
ceptions were identified. The first included Chinese Mandarin, Thai, 
Hebrew, and Tamil. For these languages, the authors state that there is 
an insufficient amount of data for the earlier age groups. The lack of data 
skews the estimates of variation set proportions making it difficult to 
compare to proportioins across age groups. For example, Grigonytė and 
Björkenstam (2016) note that the corpus data for children in the Chinese 
Mandarin corpus in age group 2 (1;0–1;3) contains only 294 utterances; 
compared with 1395 utterances in age group 3 (1;3–1;11). Second, 
French and Portuguese corpus data in CHILDES showed no consistent 
developmental trends. 

Finally, Grigonytė and Björkenstam (2016) acknowledge a serious 
methodological point regarding surface-based approaches to identifying 
variation sets. In CHILDES, the corpus annotation scheme contains many 
elements that do not correspond to segmental properties of the input. 
These include annotation of perceived pause length, prosody, etc. 
Additionally, certain CHILDES transcripts, such as Cantonese, Chinese 
Mandarin, and Japanese, are encoded in Latin characters in some cases 
(about half of the recording sessions), whereas transcripts for the age 
group 2 are in Chinese (logogram) characters. This difference makes it 
difficult to compare samples not only within, but across languages. 
Addressing these challenges when comparing corpus data from hetero-
geneous sources is critical. As we discuss below, careful attention must 
be paid to transcription conventions in order to make different corpora 

2 Waterfall (2006) notes that the data used in the study were collected by 
Goldin-Meadow, Huttenlocher, & Levine (2002–2007) for a project funded by 
NIH Grant # POl HD40605. 3 https://github.com/ginta-re/Varseta 
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syntactically, and semantically, interoperable for cross-linguistic com-
parison and analysis. 

3. Materials and methods 

In this section, we describe the data and introduce a comprehensive 
approach to automatic, cross-linguistic extraction of variation sets. 
Based on the findings of Grigonytė and Björkenstam (2016), we focus on 
the anchor method, as it has been shown to perform better against gold 
standard datasets than the incremental method. Because we are 
comparing different languages, we further restrict our matches to nouns 
and verbs. This is because these parts of speech are morpho-syntactically 
well-defined and productive in all of the languages in our sample. 

Section 3.1 describes the data in greater detail. Section 3.2 describes 
the general form of the algorithm, as well as its parameters. Section 3.3 
outlines our additional measures of child development and how they are 
computed. 

3.1. Data 

The data for this study can be broken down into two classes: CSS and 
ADS. We describe each in more detail below. 

3.1.1. Child-surrounding speech (CSS) data 
Our CSS data come from the ACQDIV database (Jancso et al., 2020; 

Moran et al., 2016). ACQDIV contains longitudinal corpora of child 
language acquisition from ten typologically maximally diverse lan-
guages (Stoll & Bickel, 2013). These corpora consist of transcribed 
speech recorded in naturalistic settings. The recordings target specific 
children between the ages of one and six and cover both their speech and 
the speech of surrounding children and adults. In the present study, we 
analyze seven of these corpora: Chintang (Stoll et al., 2012), Inuktitut 
(Allen, 1996, 2021), Japanese (Miyata, 2012), Russian (Stoll & Meyer, 
2008), Sesotho (Demuth, 2015), Turkish (Küntay, Koçbaş, & Taşçı, 
2021), and Yucatec Maya (Pfeiler, 2021).4 For comparability with pre-
vious studies, we also added the English Manchester corpus (Theakston 
et al., 2001).5 

The corpora in our sample represent a wide range of child-rearing 
situations. For example, the Japanese corpus contains primarily 
mother and child dyads (majority child-directed speech), while the 
Chintang corpus contains interactions between children and multiple 
individuals, as well as a good deal of speech between adults in the 
presence of the child. However, we do not have reliable coding for 
whether speech is directed to the child or someone else (overheard 
speech) for all utterances. This is why we have chosen to collapse these 

categories under the label “child-surrounding speech.” 
Table 1 summarizes the data (bold languages have not appeared in 

any previous quantitative study of variation sets, i.e., half of the current 
sample). Session counts reflect the number of independent recordings 
made across all target children. Utterance counts are based on whatever 
segments of text were considered to be coherent units of speech by 
expert transcribers. They correspond roughly to clauses but do not 
strictly align with any syntactic or interactional (turn-based) unit. 
Table 2 illustrates the cultural, geographical, genealogical, and de-
mographic diversity of the languages in the sample.6 

The languages in the ACQDIV sample were selected from five clusters 
calculated via maximum diversity sampling (Stoll & Bickel, 2013) from 
typological characteristics encoded in the AUTOTYP database (Bickel 
et al., 2017) and in the World Atlas of Language Structures (WALS; Dryer 
& Haspelmath, 2013). This clustering procedure generates maximal 
linguistic diversity in regard to typological parameters (for precise 
definitions of the parameters and values, see Stoll & Bickel, 2013, pg 8), 
including:  

• Verb position (word order)  
• Degree of synthesis (verbal and nominal)  
• Syncretism  
• Presence and nature of agreement and case marking  
• Polyexponence and inflectional compactness of categories  
• Inflectional classes 

In Appendix 1, we provide the typological parameters and feature 
values for the languages in our sample as given in Stoll and Bickel 
(2013). The resulting language sample allows us to search for universal 
processes and mechanisms across typologically diverse languages. Ex-
amples 4–11 illustrate the grammatical diversity encountered in this 
sample for several different grammatical features. For example, word 
order differs radically between the different ACQDIV languages, e.g., 
SVO in Russian (3), SOV in Turkish (4), and VOS in Yucatec (5)7:  

3. Ja ne xoč-u salat!  
1SG.NOM NEG want.IPFV-NPST.1SG.S/A salad.SG.ACC.  
‘I don’t want salad!’ (Stoll & Meyer, 2008; session: A05021006; utterance: 68).   

4. Abla çay-ın-ı iç-sin  
sister tea-POSS.3SG-ACC drink-OPT.3SG.S/A.  
‘Let sister have her tea.’ (Küntay et al., 2021; irem32-02sep03–02–00-16; 1825). 

(continued on next page) 

Table 1 
Summary information about corpora used in this study.  

Language Children Age range Sessions Utterances Words 

Chintang 7 0;7.23–4;4.25 475 160,358 459,187 
English 12 1;8.22–3;0.2 804 373,934 1,443,404 
Inuktitut 4 2;0.11–3;6.12 75 13,935 22,976 
Japanese 7 1;4.3–5;1.23 392 246,091 747,485 
Russian 5 1;3.26–6;8.12 449 474,905 1,316,322 
Sesotho 3 2;1–4;7 129 23,538 82,923 
Turkish 8 0;7.28–3;0.24 373 276,279 936,812 
Yucatec 3 1;11.9–3;5.4 233 30,240 91,140  

Table 2 
The language sample.  

Language Spoken mainly in Language 
family 

# of 
speakers 

Language 
status 

Chintang Nepal Sino- 
Tibetan 

5-6 K Definitely 
endangered 

English USA, Canada, 
Australia, UK, South 
Africa, New Zealand 

Indo- 
European 

360 M Safe 

Inuktitut Canada Eskimo- 
Aleut 

30 K Vulnerable 

Japanese Japan Japanese 128 M Safe 
Russian Russia Indo- 

European 
166 M Safe 

Sesotho South Africa Bantu 5.6 M Safe 
Turkish Turkey Turkic 71 M Safe 
Yucatec Mexico Mayan 706 K Safe  

4 We do not include Cree (Algonquian) due to its small corpus size (only 12 
recording sessions from one child). And we do not include Dënësųłiné̈ (Atha-
baskan) because this corpus is still being actively collected and annotated.  

5 The Japanese and English corpora were taken from CHILDES (MacWhinney, 
2000). 

6 Population figures and language endangerment status are from the En-
dangered Languages Project (http://endangeredlanguages.com/) and the Eth-
nologue (https://www.ethnologue.com/) and from sources therein.  

7 Examples given here follow the Leipzig Glossing Rules for interlinear 
glossing: https://www.eva.mpg.de/lingua/resources/glossing-rules.php. 
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(continued )   

5. T-u-náach in-kʼab le Osita-o  
PFV-3.A-bite POSS.1SG-hand DET O.-DIST.  
‘That Osita bit my hand.’ (Pfeiler, 2021; SAN-1996-06-14; 181).  

Regarding degree of synthesis, languages like English are relatively 
isolating in their morphology, whereas Chintang is polysynthetic (6):  

6. Athom u-patt-a-ŋ-s-a-ŋ-nɨ-ŋ = kha  
before 3A-call-PST-1sP-PRF-PST-1sP-3p = NMLZ.  
‘They had called me before.’ (Stoll et al., 2012; CLDLCh2R02S01b; 415).  

Whereas English and Russian are nominative/accusative languages 
(i.e., the nominaitive marks the only argument of an intransitive clause, 
S, or the agent in a transitive clause, A, , while the object of a transitive 
clause, P, is marked by the accusative), Chintang and Inuktitut exhibit 
ergative/absolutive alignment and use a separate form (the ergative) to 
mark A arguments, while S and P are marked by the same form (the 
absolutive). Note that there is a good amount of variability in the spe-
cific behavior of ergative/absolutive systems across languages. For 
instance, even though both Chintang and Inuktitut have an ergative that 
is used to mark agents in (6a) and (7a), the Chintang ergative also serves 
(among others) to mark causes (6b), while the Inuktitut ergative is also 
(again among others) used as a genitive (7b)  

6a. U-madum-ŋa = ta khur-u-gond-o-ko.  
POSS.3SG-aunt-ERG = FOC carry-3[s]P-around-3[s]P-IND.NPST[.3sA].  
‘His aunt carries her around.’ (Stoll et al., 2012; CLDLCh3R03S04; 0496).   

6b. Kok-ŋa = ta meʔ-no = kha = lo na.  
rice-ERG = FOC be.big-IND.NPST = NMLZ = SURP TOP.  
‘He’s so big because of the rice.’ (Stoll et al., 2012; CLDLCh2R04S04; 438).   

7a. Ii, nuka-pi-ppit atu-ruma-mmauk.  
no younger_same_sex_sibling-DIM-POSS.2SG > 3SG.ERG use-want-CAUS.3SG 
> 3SG.  
‘No, (it’s because) your sister wants to use it.’ (Allen, 1996, 2021; LIZ14WM; 
206).   

7b. Ataata-ppit kami-alu-alu-ni sanarvat-ti-gia-lau-rit.  
father-POSS.2SG > 3SG.ERG boot-big-big-MODALIS.DUAL put-CAUS-INCEP- 
POL-IMP.2SG.S.  
‘Put your father’s big, big boots somewhere.’ (Allen, 1996, 2021; ELI51WM; 
593).  

Another example of typological diversity in the sample regards ver-
bal morphology. Verbs in Japanese (8) do not agree with any arguments, 
whereas Russian verbs (9) agree with a nominative S/A argument 
(obnima-eš agrees with ty) and Sesotho verbs (10) agree with S or both A 
and P:  

8. Okaa-san ga ue kara kore o Otos-u  
mother-HON NOM above ABL PROX ACC drop-NPST.  
‘Mummy drops this from above.’ (Miyata, 2012; session: tom20010518; 
utterance: 1806).   

9. Kak ty mam-u obnima-ešʼ?  
how 2SG.NOM mother-ACC embrace.IPFV-PRS.2SG.  
‘How do you embrace mummy?’ (Stoll & Meyer, 2008; session: A00410909; 
utterance: 594).   

10. Mme o-e-hlatsw-its-e  
mother(I) NC⋅I⋅S/A-NC.IX.P-wash-PRF-IND.  
‘Mother washed it.’ (Demuth, 2015; session: tiid; utterance: 143).  

For more examples and detailed discussion of the typological char-
acteristics of the ACQDIV language sample, refer to the ACQDIV corpus 
database user manual (Moran, Schikowski, Jung, & Stoll, 2021). 

3.1.2. ADS data 
Conversational ADS data are only available for two of the languages 

that also appear in our sample of CSS: English and Chintang. Note that 

these languages differ along several of our typological variables (see 
Appendix 1), and as such represent a highly contrastive test pair for 
typological comparison. 

The English data come from the spoken component of the British 
National Corpus 2014 (Love, Dembry, Hardie, Brezina, & McEnery, 
2017). This corpus contains roughly 11.5 million words of transcribed 
conversation. The Chintang data come from a large audiovisual corpus 
of adult conversation (a subset of Bickel et al., 2011). We restrict the 
analysis to conversations that did not involve any experimental 
manipulation (e.g., we omitted conversational retelling tasks, such as 
those collected using the Pear Film stimulus; Chafe, 1980). The resulting 
sample consisted of 17 different sessions, totalling 7836 total utterances. 

3.2. Procedure 

We propose a general procedure for automatically extracting varia-
tion sets from text-based corpora. Our procedure is flexible and can 
accommodate any crossing of the parameters we adopt from previous 
studies (e.g., Brodsky et al., 2007; Grigonytė & Björkenstam, 2016; 
Wirén et al., 2016). In this way, we can compare the performance of 
various combinations of parameter settings across different languages 
and target children’s age ranges.8 

The object of matching parameter dictates at what linguistic level 
the analysis is performed: words or morphemes. Following Waterfall 
(2006), we restrict the analyses of words and morphemes to nouns and 
verbs. While including all parts of speech increases the proportion of 
variation sets that are identified (Onnis et al., 2008), this approach in-
troduces potentially less relevant aspects of repetition (e.g., function 
words, interjections, and so on). Further, nouns and verbs are ubiquitous 
across the languages in our sample, while other categories may or may 
not be shared (e.g., Russian lacks articles, and adjectival meanings tend 
to be encoded by verbs in Inuktitut, but not in many of the other lan-
guages in our sample). Fig. 1 compares two consecutive utterances taken 
from a corpus of Chintang (Bickel et al., 2011). The first utterance 
contains a noun root (thaũ ‘place’) and verb root (ims ‘sleep’). Both 
words are morphologically complex, carrying the plural suffix -ce and 
the nominalizing suffix -kha, respectively. The second utterance contains 
two noun roots (both thaũ ‘place’) and two verb roots (yug ‘stay’ and ca 
‘eat’). Similar to the first utterance, both verb roots are suffixed with the 
nominalizer -kha, and one noun root is suffixed with the plural -ce. These 
differences in morphological realization lead to different behavior in the 
word-level and morpheme-level analyses. The morpheme-level analysis 
produces consistent results as it is blind to the variable morphological 
contexts. The word-level analysis yields more variable results because it 
is sensitive to parts of the word beyond the root. This sensitivity depends 
on how the units are matched, a point to which we now turn. 

The type of matching algorithm parameter includes two match 
conditions: strict and fuzzy. The strict condition requires exact matches 
of words or morphemes (i.e., identical strings). Fuzzy matching allows 
strings to be counted as matches even if they are not identical. Therefore 
a question is, how similar do two strings need to be? We measure the 
degree of similarity using the SequenceMatcher function from the difflib 
library in the Python programming language, which implements a 
version of the Ratcliff-Obershelp gestalt pattern matcher (Ratcliff & 
Metzener, 1988).9 SequenceMatcher returns a similarity score between 
0 (no overlap between two strings) to 1 (identical strings). Following 
Grigonytė and Björkenstam (2016), we set the threshold for a successful 

8 We originally considered an additional parameter, namely, the number of 
matches required between two utterances before they are considered to belong 
to a variation set. In a preliminary analysis, we found that even moving from a 
threshold of one match to two virtually eliminates our ability to detect variation 
sets. While this fact is interesting in itself, a full investigation is beyond the 
scope of the present study.  

9 https://docs.python.org/3.6/library/difflib.html 
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match between words or morphemes to 0.55. Fig. 1 exemplifies the 
differences between strict and fuzzy matching. For fuzzy matching, the 
similarity ratio is provided. As this example shows, fuzzy matching 
returns morphologically similar words as a match even when the roots 
differ (given sufficient similarity of the additional morphemes, in this 
case, the shared -kha in imkha and chaka). 

The window size parameter defines the number of consecutive ut-
terances that we consider when making pairwise comparisons. In Fig. 1, 
the window size is set to two (i.e., we have two consecutive utterances), 
which is the minimum value. For any window size setting w, the number 
of possible pairwise comparisons is w-1 (i.e., one comparison in Fig. 1). 

To summarize, the parameters in our algorithm include:  

• Object of matching (nouns/verbs only; full words or morphemes)  
• Type of matching algorithm (exact or fuzzy string matching)  
• Window size (number of successive utterances in which we look, e.g., 

2–10) 

In the remainder of this study, we will consider several different 
combinations of parameter settings. Specifically, we cross our two ob-
jects of match (word and morpheme) and two types of match (fuzzy and 
strict) to yield four conditions: words with strict matching, words with 
fuzzy matching, morphemes with strict matching, and morphemes with 
fuzzy matching. In each of these conditions, we estimate the proportion 
of utterances belonging to variation sets for windows of size from 2 to 
10. While prior research has explored both incremental and anchor- 
based approaches, we only pursue the anchor method here. This deci-
sion was made because Grigonytė and Björkenstam (2016) report better 
or equivalent performance of this method in all but the oldest age group 
when it was evaluated against their gold standard. The anchor method is 
illustrated in Fig. 2. 

The anchor strategy measures pairwise similarity of the first utter-
ance in a sequence (the anchor) to each subsequent utterance within the 
window. The similarity of the words or morphemes in each pair of ut-
terances is then computed. If the number of matching words or mor-
phemes meets or exceeds the required number of matches, both 
utterances are labeled as belonging to a variation set. In this study, we 
only consider a match threshold of one. This way, we maximize the 
number of variation sets that we observe. We then iterate the process by 
sliding the window forward through the text, one utterance at a time. 
Crucially, the status of whether any utterance belongs to a variation set 
can only move from no to yes across iterations. That is, an utterance must 

only match one other utterance in one window to be counted as 
belonging to a variation set, and that status is final. 

The outcome of each of our analyses is a proportion representing the 
number of utterances that belong to at least one variation set out of the 
total number of utterances (0 = no utterance belongs to a variation set; 1 
= every utterance belongs to a variation set). We compute one such 
proportion per session, per corpus, per parameter combination. 

Finally, we repeat the steps outlined above on a simulated random-
ized version of each session, for each corpus, and for both words and 
morphemes (where available). To create the randomized versions of the 
texts, we first calculated the average number of nouns and/or verbs per 
utterance, per session. This average amounts to the effective mean 
length of utterance (eMLU) since our matching algorithm only compares 
nouns and verbs. Next, for each session, we generated n random utter-
ances of length l, where n is equal to the number of utterances in the 
original session and l is equal to the eMLU of that session. Each random 
utterance was constructed by sampling with replacement from the list of 
all noun and verb forms (words or morphemes, depending on the level of 
analysis) that appear in the target session (tokens, not types). The result 
is a random session which consists of the same number of utterances as 
the original session, where each random utterance is (1) as long as would 
be expected based on the eMLU of the original and (2) sampled ac-
cording to the same empirical distribution of word forms as is present in 
the original. 

Random baselines defined in this way have certain properties. Most 
importantly, they may produce estimates of the amount of repetition 
that are greater or less than those observed in the corresponding true 
sample. If greater, there are two potential explanations. First, it could be 
that there really is a superabundance of repetition in the true sample. 
Such a situation would be fully in line with the traditional understanding 
of variation sets. It would mean that even though a few tokens take the 
lion’s share of the probability mass, when the others do appear, they do 
so in clusters. Second, the distribution from which the random sample is 
computed might not be particularly Zipfian in the first place. If it shows 
a fatter positive skew (many more higher frequency types), then simple 
random matching becomes more difficult. But note that such a fat-tailed 
distribution would be informative for understanding CSS: it would 
suggest that adults use richer, but more clustered vocabulary when 
speaking with children, in line with the first point (more repetition, but 
clustered) and variation set theory overall. If the true estimates are 
lower than the random estimates, then there is only one explanation: 
speakers are systematically less repetitive than they could have been. In 

Fig. 1. Different variation set match outcomes for strict and fuzzy matching for words and morphemes in two Chintang utterances. Bolded elements are those 
considered for matches. Only successful matches are shown. SM score = SequenceMatcher rating of similarity. 

N.A. Lester et al.                                                                                                                                                                                                                                



Cognition 221 (2022) 104986

8

other words, they prefer to be informative, and not simply produce 
words in accordance with their frequency distribution. In this case, the 
difference between the random and true estimates becomes particularly 
important. The closer they are, the less informative the speech is. It 
communicates the frequency distribution of words but without the 
special degree of repetition that would suggest the presence of variation 
sets. The more distant the two estimates, the more the speakers have 
gone out of their way to avoid the Zipfian curse on repetition in their 
local choices. They become more informative, and less repetitive, rela-
tive to their statistical potential. This difference is therefore a more fine- 
tuned instrument for gauging the presence and/or degree of variation 
sets in a given text than the simple empirical proportion itself. 

3.3. Measures of child development 

To address the potential issues of treating age as an index of linguistic 
development, we consider several additional indices derived from the 
speech of the children: mean length of utterance in words (MLUw), 
mean length of utterance in morphemes (MLUm), lexical diversity 
(lexical H) and morphological diversity (morphological H). 

Mean length of utterance is simply the total length of a given session 
in words or morphemes divided by the total number of utterances in that 
session. We compute these measures for all sessions where possible 
(some sessions do not have morphological annotation). 

Diversity is operationalized as the Shannon entropy of the frequency 
distribution of words or morphemes (bias-corrected using the method 
described in Chao, Wang, and Jost (2013). As with the MLUs, entropies 
were computed for each session. Each entropy estimate was then 
normalized by dividing it by the associated maximum entropy for that 
session (defined as the log of the number of distinct word or morpheme 
forms in the session). 

Age, MLUm/w and lexical/morphological H are all tightly inter-
correlated. We therefore attempted to identify their common informa-
tion by means of a principal component analysis (PCA). PCA produces n 
orthogonal rotations of a matrix of variables (components), where n is 
the number of columns in the matrix. These components can then be 
compared individually against the original matrix to give some idea of 
what they encode. We performed one PCA over age (log transformed), 
MLU, and H for each language in our CSS sample. Prior to each PCA, all 
variables were centered using z-scores. To keep level of analysis 
consistent, where word-level and morphological data were available for 
a given language, we performed two PCAs: one with age, MLUw, and 
lexical H; and one with age, MLUm, and morphological H. In all 

languages, the principal component (i.e., the component that explains 
the most variance) showed at least two of the three developmental 
variables in alignment. In the cases where only two variables aligned 
(Inuktitut–morphemes and Sesotho–words), the third was either non- 
correlated or marginally negatively correlated. A typical example is 
given in Fig. 3. 

In Fig. 3, the x-axis plots the principal component (PC1); the y-axis 
plots the second-most informative component (PC2). The portion of 
cumulative explained variance associated with each component is given 
in parentheses on the axis label. Arrows indicate the direction and 
strength of association of each to the principal component, and each is 
labeled for the original variable it represents. Henceforth we focus only 
on PC1. Right-facing arrows indicate positive association with PC1. 
Deviation from a slope of zero, either up or down, indicates decreasing 
association strength. In this case, all arrows point in the same direction 
with respect to PC1, indicating that this component captures informa-
tion shared across the developmental indices. PC1 is therefore a more 
distilled representation of overall linguistic development than any of the 
source variables individually, albeit one that more directly corresponds 
to lexical diversity (WordEnt) and age (logAge) than to MLU (MLUw).10 

Finally, we bin the CSS sessions based on each of the developmental 
indices mentioned above to allow for cross-sectional comparison with 
ADS. Bins were defined so that the total population – across all corpora – 
was split evenly into four groups so that each bin contains approxi-
mately one fourth of all data points from the entire sample of languages. 
Bin labels run from 1 (lowest values, i.e., earliest stages of development) 
to 4 (highest values, i.e., latest stages of development). Note that 
because the corpora vary in the number of children and age ranges 
covered, not all languages have data points in all bins. The benefit of this 
approach is that we see directly where one language may be compared 
to others. The ADS corpora are assigned to a single group for all indices 
labeled “adult”. The result is six new variables: age groups, MLUw groups, 
MLUm groups, lexical diversity groups, morphological diversity groups, and 
PCA groups. 

4. Results 

Here we report the results of two sets of analyses, one longitudinal 
and the other cross-sectional. The longitudinal analyses look at how 

Fig. 2. Anchor method and how comparisons are made between utterances (for an example window size of 5). Arrows in the top panel indicate successive com-
parisons against the first utterance. Dotted lines connect words (or morphemes) that will be compared between utterances. 

10 All PCAs, as well as visualizations of their results can be found in our 
GitHub repo (https://github.com/acqdiv/variation-sets). 
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repetitiveness relates to the development of the target child, measured in 
several different ways. The cross-sectional analysis compares the 
average repetitiveness in CSS at different developmental stages to the 
average repetitiveness in ADS. All analyses are compared across true and 
randomized versions of the samples. 

4.1. Longitudinal analysis of child-directed/surrounding speech 

Due to the complexity of the parameter space, we perform several 
linear mixed-effect regressions using the lme4 package (Bates, Mächler, 
Bolker, & Walker, 2015) from R (R Core Team, 2021). Each regression 
was based on a different dataset, and each dataset captured a unique 
crossing of match type (two levels: words or morphemes) and match 
criterion (two levels: identity or fuzzy, where a fuzzy match requires a 
SequenceMatcher score of 0.55 or greater as per Grigonytė & Björken-
stam, 2016; see Section 3.2). This process resulted in four general types 
of models:  

• words & fuzzy  
• words & strict  
• morphemes & fuzzy  
• morphemes & strict 

Russian, English, and Japanese were omitted from the morpheme 
models because the words have not been morphologically segmented. 

The type of model was further crossed with the type of develop-
mental index – age, MLU, lexical/morphological diversity, and the 
principal component taken over all three – to produce sixteen total in-
dividual model types. Variation sets were modeled in each language 
separately using as many of these model types as possible given the 
limits of the data.11 

All of the models share a common structure. The response variable 
was the estimated proportion of variation sets from each recording 
session. Because proportions are inherently bounded between 0 and 1, 
we apply a logit transform before fitting the regression. This trans-
formation stretches the range of possible values to {− ∞, ∞}, which 
prevents the model from generating expected values outside of the 
possible range. Fixed effects are:  

• developmental index – age, MLU, word/morpheme diversity, or PCA 
component based on the target child  

• window size  
• number of utterances in the session  
• number of unique speakers in the session  
• mean length of utterance (MLU-adult; nouns and/or verbs only)  
• text type (random, original) 

We further include the two-way interaction between text type and 
developmental index. Random intercept adjustments were added for 
recording session nested in target child (each session is uniquely asso-
ciated with one target child, but each target child appears in many 
sessions).12 To increase the reliability of our estimates, we restrict the 
analysis to sessions with 50 or more total utterances. We also remove 
outliers, defined as observations of the dependent variable that fall 
outside the range of two standard deviations above or below the mean 
per target child within each crossing of corpus, level of analysis, and 
type of match.13 

Fig. 3. PCA results for the word-level analysis in Chintang.  

11 We also performed a model over the entire sample with a corpus x devel-
opmental index interaction term. All models produced similar results. See the 
https://github.com/acqdiv/variation-sets/blob/master/Analysis/analysis.Rmd 
for the complete set of models and https://github.com/acqdiv/variation-sets/t 
ree/master/Results for all model summaries. 

12 The models for Inuktitut would not converge with the full random effect 
structure, so we simplified to random intercepts for the target children. The 
same was true for Japanese (fuzzy, morphemes) and Yucatec (strict, mor-
phemes, age/PCA/MLU). These changes only minimally affected the model 
estimates.  
13 We also perform the same models for the full samples (i.e., with no outliers 

removed), as well as samples for which outliers are defined by the interquartile 
range. The approach we report here leads to the best behaved models. All of the 
models are reported in https://github.com/acqdiv/variation-sets/blob/mas 
ter/Analysis/analysis.Rmd. 
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For each model, we take a two-step approach. First, we test the true 
data against the developmental index (with all additional controls) to 
determine whether there is a significant association. Then, we add the 
random data, along with the main effect of text type and its interaction 
with the developmental index. In this way, we attempt to determine 
whether significant main effects of the index can be distinguished from 
chance. The complete set of models and model summaries, along with all 
necessary data, can be found in the GitHub repository. 

4.1.1. Word-level analyses 
We begin with the control variables. The only control to be signifi-

cant in all languages, in all conditions, was window size. Increasing the 
window size always increases the proportion of variation sets. This 
makes perfect sense: adding utterances increases the number of possible 
comparisons, and with each new comparison comes another chance for a 
match. Number of speakers was significant about 60% of the time, again 
always in the same direction. Adding speakers decreases the observed 
proportion of variation sets. MLU-adult was significant about about 40% 
of the time and was also consistent: increasing numbers of nouns and 
verbs per average token leads to higher match proportions. Finally, the 
number of utterances was nearly never significant at only 12%. When it 
was, the correlation with variation set proportions was positive. Longer 
sessions occasionally yield higher proportions of variation sets. Please 
see the GitHub repo for the complete set of model summaries. 

The critical variables are summarized in Figs. 4–5. In each figure, 
columns correspond to developmental indices and rows to corpora. In 
each panel, y-axes correspond to the expected proportion of utterances 
belonging to a variation set, and x-axes correspond to the developmental 
index (centered with z-scores). Regression fits are plotted as lines. The 
95% confidence intervals are plotted as colored ribbons around the 
regression lines. Stars appear immediately adjacent to the develop-
mental index label in the title of each plot to indicate the significance of 
the interaction with text type (***p ≤ .001, **p ≤ .01, *p ≤ .05; these 
conventions are followed throughout). If no stars appear, the relation-
ship is not significant (i.e., the random baseline and the original text 
behave the same over development). Stars also appear within paren-
theses next to the plot title. These indicate the significance of the effect 
of the developmental index when tested in isolation (i.e., whether there 
is a reliable association between the developmental index and propor-
tion of variation sets in the true sample alone). The star system works the 
same, but we include n.s. to indicate non-significance. We begin with the 
word-based analyses. 

Looking first at the simple analyses (i.e., those without the random 
data; significance indicated in parentheses above each panel in 
Figs. 4–5), we see that every language except one showed a significant 
correlation between at least one developmental index and the propor-
tion of variation sets, regardless of whether we apply strict or fuzzy 
matching (the one outlier of the group is Inuktitut, for which no sig-
nificant correlations were uncovered). Note also that there is remarkable 
consistency in the shape of the effects across developmental indices 
within each language. However, there are cases in which not all indices 
reach significance, and these gaps are not consistent across languages. 
Therefore, our decision to include as many such indices as possible is 
justified not only because it allows for the discovery of convergent ev-
idence, but also because it corrects for differences in the behavior of any 
single measure across corpora (based on their contents and/or structure) 
or languages. 

Variation sets were detected for all languages in all conditions (i.e., 
in no language was the proportion universally zero). We therefore 
replicate the findings of prior cross-linguistic studies (e.g., Grigonytė & 
Björkenstam, 2016). However, there is considerable variation in at least 
two respects: the range of proportions predicted and the direction of the 
developmental effect. The range of proportions is largest for Russian, 
which reaches as high as 50% and as low as 5%. Turkish also shows a 
large range, covering values from about 10% to 40%. Sesotho shows the 
weakest effect, ranging only between approximately 2 to 10%. 

Regarding the direction of the developmental effect, we see a three-way 
split. English, Japanese, Russian, Sesotho, and Yucatec all show the 
expected downward trend over time. English, Japanese, Russian, and 
Sesotho show the effect in at least three out of four developmental 
indices for both fuzzy and strict matching. Yucatec only shows the effect 
for age in the fuzzy matching condition, but shows it universally for 
strict matching. Inuktitut showed no developmental effect for words in 
any condition. But surprisingly, Chintang and Turkish (and numerically, 
Inuktitut, in some cases) show increasing amounts of repetitiveness for 
at least one of the four indices. Age was always significant, and Turkish 
showed significant effects for all indices in all conditions. Again, the 
effect sizes differ, with Turkish showing a much stronger trend than 
Chintang. This finding is particularly surprising given that prior studies 
have reported decreasing trends for Turkish using age as the develop-
mental index (but based on a different corpus; Grigonytė & Björkenstam, 
2016). Nevertheless, the fact that at least two languages in our sample 
exhibit increasing amounts of repetition, and that this effect was repli-
cated for at least two developmental indices in each, strongly suggests 
that the reversal in the trend is not a fluke. 

Turning to the interaction effect, it was significant for all languages 
for at least one developmental index, regardless of matching method. 
This means that there is some structure to the developmental curves that 
we see for the true texts which cannot simply be attributed to random 
selection from a vocabulary. However, as implied above, we do not 
detect a difference for all languages in all conditions, nor for all devel-
opmental indices. This fact underscores the importance of exploring as 
many developmental indices as possible when comparing variation sets 
across languages. 

In the fuzzy matching condition, random estimates were uniformly 
greater than the true estimates. Thus, the corpora were less repetitive 
than would have been expected by chance. The same general pattern 
holds, though to a much lesser extent, in the strict matching condition. 
For the majority of languages, the random and true estimates are much 
more similar to each other than was observed in the fuzzy-matching 
condition. This difference appears to be driven by overall decreases in 
proportions observed between the fuzzy and strict conditions. When the 
proportions for the true text, even based on fuzzy matching, were low, 
the overall decrease in proportions due to strict matching leads to a 
closer approximation between the true data and the random baseline. 
Three languages buck this trend. Sesotho and Inuktitut (for the most 
part) maintain a larger gap between the random and true estimates. 
Russian shows the opposite pattern, with true estimates topping random 
estimates at most developmental ranges, though the estimates remain 
quite close to each other. 

The greater overall similarity between random and true texts when 
strict matching is applied indicates that the strict-matching criterion 
reduces our ability to distinguish signal from noise in variation set 
proportions, even when the differences can still be established as reli-
able. But the major take-away is that different corpora – either because 
of their content or the intrinsic properties of the languages – respond 
differently to randomization with respect to the behavior of our 
matching algorithms. We cannot simply assume that the proportions we 
see in true texts across languages are indeed comparable. The more they 
deviate from the random baseline, the more information is carried by the 
repetition. Hence, the sheer magnitude of the proportions themselves is 
potentially misleading. 

But what of the shape of the random baseline curves? While most 
languages show a generally flat curve (given in red in Figs. 4–5), this is 
not universally the case. For example, Turkish words with strict 
matching show a decreasing random baseline over time. These small 
trends are most likely due to shifts in the underlying frequency distri-
bution of words across the corpora. If the samples become less broadly 
repetitive (i.e., more Zipfian), over development, then we should expect 
the random baseline for variation set proportions to decrease. In other 
words, time-evolving random baselines suggest global shifts in the fre-
quency distribution of words. Notably, the random baselines in Inuktitut 
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Fig. 4. CSS, words, fuzzy matches.  
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Fig. 5. CSS, words, strict matches.  
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behave somewhat erratically, even changing direction across the 
different developmental indices. The source of this behavior is un-
known. One contributing factor could be the fact that this corpus is 
much smaller than the majority included here. For example, it is only 
one-quarter the size of the next largest corpus, and less than 4% of the 
median size across corpora. Small samples lead to less accurate estimates 
of linguistic behavior, especially MLU and lexical entropy (hence the 
PCA), which in turn could produce erratic patterns of development, even 
in the randomized version of the corpus. This fact might also help to 
explain why we did not uncover any reliable developmental effects for 
this language. 

4.1.2. Morpheme-level analysis 
We repeat the above analyses for the morpheme-level data. Recall 

that only five of the eight total languages were annotated for morpho-
logical structure, and as such, suitable for this analysis. Note also that 
this subsample includes the languages with most elaborate morpholog-
ical structures, particularly in the verbs (Chintang, Inuktitut, Turkish, 
Yucatec). Results are presented in Figs. 6–7 for fuzzy and strict match-
ing, respectively. Plotting conventions are the same as those in Figs. 4–5. 

The overall pattern of results for morphemes is consistent with that 

observed for words. The major difference is that the morpheme-level 
analysis yields greater proportions of variation sets overall. In some 
cases, developmental trends were strengthened, especially for Turkish, 
and Yucatec. As with words, changing morpheme-level matches from 
fuzzy to strict reduces the proportion of observed variation sets in all 
languages. We also see the now familiar trend for true data to more 
closely approximate the random baseline with strict than with fuzzy 
matching. For all languages in the sample, at least two of the develop-
mental indices differ significantly in their developmental trajectory from 
the random baseline, with the exception of Sesotho in the fuzzy 
matching condition. 

Sesotho is an outlier in the group for another reason; it shows no 
reliable developmental trends when considered at the level of mor-
phemes. This contrasts with the word-level analysis, in which reliable, if 
somewhat weak, negative trends were observed in both fuzzy and strict 
matching conditions. However, there are two cases in which Sesotho 
shows a significant interaction between developmental index and text 
type (morphological diversity in fuzzy matching; MLUm and PCA in 
strict matching). In all of these cases, the random baseline shows a slight 
positive trend, which leads to a greater difference between it and the 
true estimates at the latest developmental stages. As discussed above, 

Fig. 6. CSS, morphemes, fuzzy matching.  
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this difference reflects increasing informativity of the text relative to its 
underlying frequency distribution. Sesotho thus becomes increasingly 
less repetitive than it could be over time, a pattern that is consistent with 
the reliably negative developmental trends observed for words. 

On the other hand, Inuktitut showed its only significant develop-
mental trends in the morpheme-level analysis, both of which appeared 
for the PCA-derived developmental index. But this change is almost 
certainly a reflex of shifts in the underlying distribution of morphemes, 
as evidenced by the lack of an interaction effect. Inuktitut only becomes 
more repetitive because the distribution becomes more sharply Zipfian 
(i.e., as the probability mass becomes increasingly bunched into a 
smaller set of types). 

The other languages behave more or less as expected given the word- 
level analysis. This indicates that for many languages – even some that 
are morphologically complex – words are a good-enough proxy for 
detecting variation sets and their longitudinal trajectories. This fact is 
useful, as morphological analysis of large scale corpora is costly, both in 
time and effort. Importantly, however, the magnitudes of the estimates 
and the steepness of the trends depend on a combination of the language 
and level of analysis. Furthermore, choice of one level of analysis over 
the other can obscure otherwise present effects (as was the case for 

Sesotho). 

4.1.3. Interim summary 
Our analysis so far reveals that variation sets appear in some measure 

in all languages, at all age ranges, irrespective of whether we consider 
words or morphemes, or whether we require strict matches or fuzzy 
matches. However, the proportion of utterances that belong to variation 
sets differs across languages and conditions, as does the relationship 
between the true and randomly generated text. 

The overwhelming trend is for true text to be less repetitive than the 
randomly generated text. This pattern is much weaker in the strict 
matching condition for some languages, most notably Chintang and 
Turkish. Nevertheless, both languages deviate significantly in their 
longitudinal trends from the random baseline. The tendency for random 
speech to be more repetitive most likely reflects the informativity of true 
speech. Randomly sampling from a Zipfian distribution (few high fre-
quency types with a long tail of singletons) results in resampling of the 
same words, and hence is more likely to produce a match. The difference 
between this random baseline and the true text tells us something about 
how much information is carried by actual speech assuming a fixed 
lexicon and frequency distribution. When the gap between the two types 

Fig. 7. CSS, morphemes, strict matching.  
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of text narrows, the repetitiveness detected by our algorithm is more 
likely to arise simply because of the structure of the lexicon in use (i.e., 
the words and their relative probabilities), and so theoretically irrele-
vant to the study of variation sets. 

Testing against the random baseline also revealed that an otherwise 
significant developmental trend in Inuktitut (for the PCA index with 
morphemes) was not reliable. When these random and true trajectories 
cannot be distinguished, we must assume that both are driven by the 
same underlying shifts in the frequency distributions of the target unit 
(words or morphemes). Future research should therefore pay careful 
attention to global statistical features of the text in order to safely 
interpret apparent developmental trends. Even so, the vast majority of 
languages and conditions did show trends that were significantly 
different from what would have been expected by chance. This point 
validates the more general hypothesis that changes in the degree of 
repetition in CSS are tied to the child’s linguistic development. 

Regarding the shape of the developmental trends, most languages 
showed the expected negative or null association. However, two, or 
possibly three, languages bucked the trend: Chintang, Turkish, and 
(possibly) Inuktitut. For these languages, CSS tends to become more 
repetitive over time. This effect is preserved even when considering 
strict matching of morphological roots, which represents the most con-
servative level of repetition. For Turkish, this finding is at odds with 
what has been reported previously. Grigonytė and Björkenstam (2016) 
found decreasing trends of variation sets, though their analysis differed 
in several ways, including which utterances were considered for com-
parison (step-wise comparison of adjacent utterances) and how they 
were compared (global similarity of full utterance strings). 

4.2. Cross-sectional analysis of adult-directed and child-surrounding 
speech 

We have so far observed reliable developmental trends in all lan-
guages, and these trends were not entirely attributable to the statistical 
properties of the corpora. However, we have not yet addressed another 
crucial component of variation sets, namely, their specificity to in-
teractions between adults and young children. Based on prior research, 
we expected variation sets to become less prevalent as the child becomes 
a more proficient speaker. By extension, adult-directed speech should be 
the least repetitive. By comparing CSS and ADS directly, we can test this 
hypothesis. We can also assess the amount of repetitiveness that dis-
tinguishes adult-directed and child-surrounding speech. 

Proportions of variation sets were extracted from true and random-
ized versions of the spoken BNC and Chintang conversational ADS 
corpora. The CSS data were split into four evenly sized groups based on 
each of the developmental indices (i.e., four sets of four groups). Both 
the English and Chintang data were considered simultaneously when 
making the splits. This means that there are some gaps in the group 
coverage depending on the language and the developmental index. For 
example, the Chintang CSS corpus includes children older than those 
found in the English CSS corpus, so that for English we only have ob-
servations for groups 1, 2, and 3 in the age index. All ADS data is lumped 
into a fifth “adult” group. 

We again model the data using linear mixed-effect regression. The 
developmental groups were each modeled separately for each language 
and match type (16 total models; 4 indices × 2 languages × 2 match 
types). As with the prior analysis, we only include sessions with 50 or 
more utterances in the interest of maximizing the likelihood of 
observing variation sets. Only word-level matching is implemented as 
we have no morphological parse of the English data. Prior to modeling, 
we remove outliers as in the longitudinal analysis (observations of the 
dependent variable that fall two standard deviations above or below the 
mean). 

The critical predictor in each model is the developmental grouping 
factor. As before, we also include text type as a covariate to distinguish 
estimates based on the original vs. randomized corpora. Finally, we 

allow text type to interact with the grouping factor. Because we do not 
have speaker labels for the ADS corpora, only session id was treated as a 
random intercept. All other aspects of the model including the addi-
tional control variables are identical to those reported above. 

Results of the models are summarized in Fig. 8 (fuzzy matching) and 
Fig. 9 (strict matching). Each panel represents the outcome of a single 
model. Predicted means and confidence intervals are given as points and 
bars, respectively. Blue corresponds to estimates based on original text 
and red to estimates based on random text. Numbers on the x-axis 
correspond to developmental groups, running from 1 (earliest stages of 
development) to 4 (latest stages of development), with ADS having its 
own category “adult.” Stars indicate the significance of the interaction 
between text type (random or original) and the developmental grouping 
factor. 

The trends displayed across groups, both developmentally and with 
respect to the random baseline, mirror closely what we found in the 
more fine-grained analysis. Chintang variation set proportions tend to 
increase over development, while English variation set proportions tend 
to decrease. Thus, the categorical splits that we impose on the contin-
uous data do not seem to obscure the expected trends. English estimates 
from original text are universally lower than the associated random 
baselines. Chintang, however, only shows a systematic difference in the 
fuzzy matching condition. This finding is most likely due to the rela-
tively more complex verbal morphology of Chintang. 

The most consistent pattern to emerge is for English. English ADS is 
uniformly more repetitive than the next closest developmental group. 
This finding is unexpected, but may be explained by the longer average 
length of utterances in the BNC. While we control for length of utterance 
in the regression model, the distribution is strongly bimodal, with CSS 
centered on a lower average length than ADS. More interesting is the fact 
that ADS shows a consistently larger difference between the random and 
original text (statistically significant in all conditions). Recall that this 
difference reflects the amount of information carried by the average 
utterance relative to the lexicon and its associated probabilities of 
occurrence. As the gap widens, more information is being encoded, 
where information should be understood as the lack of redundancy. The 
fact that the gap is larger for English ADS means that it is much less 
repetitive than it could be compared to CSS.14 In other words, CSS is less 
informative (i.e., more redundant) given its available repertoire of 
words. This finding serves as complementary support for the notion that 
variation sets, and structured repetition more generally, are exaggerated 
in CSS relative to ADS. 

Chintang ADS follows a similar pattern to English in the fuzzy 
matching condition. The gap between random baseline and original text 
is larger for adults than for the immediately adjacent developmental 
groups. However, the ADS sample behaves very similarly to the devel-
opmental group 1 (particularly for the PCA-derived index). Neverthe-
less, the contrast between true and random text is significantly larger in 
the Chintang ADS sample than in group 1 for all developmental indices 
in all conditions. Thus, statistically at least, ADS is uniformly less re-
petitive (more informative) than CSS relative to their respective random 
potentials. 

Finally, we find a general decrease in redundancy between the CSS 
and ADS bins for both languages, even though they differ in the devel-
opmental trends for rates of pure repetition (Chintang increasing and 
English decreasing). Thus, while repetition and redundancy are both 
signatures of variation sets, they either operate semi-independently or at 

14 This interpretation was confirmed by examining the normalized ranked 
frequencies of words in Chintang and English ADS vs. CSS. For both languages, 
CSS shows a fatter tail for higher-frequency items compared to ADS. More high 
frequency word types means greater diversity when sampling, hence lower 
random estimates of repetitiveness (you are less likely to keep drawing the same 
word). This distribution translates into smaller gaps between the estimates from 
original and random text. 
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different time scales. For example, the decrease in redundancy could 
begin at later stages for Chintang than for English, preceded by early- 
stage increases (suggested by the diminishing difference between 
random and true estimates for Chintang CSS). Whatever the explana-
tion, the cross-linguistic decrease in the redundancy of ADS is in line 
with prior research on variation sets. But now it is apparent that the 
trend may depend on how one measures repetition, and at what time 
scale per language. 

5. Discussion 

Prior research has shown that CSS from many different languages 
contains repetitive chains of utterances known as variation sets. 
Recently, the relative pervasiveness of such chains has been estimated 
automatically by testing the degree of similarity between neighboring 
utterances in child-surrounding speech. The present study builds on this 

work in several ways. First, we introduce an automated algorithm that 
labels utterances as belonging to variation sets according to the 
following set of parameters: window size and type of matching (strict vs. 
fuzzy string matching). This algorithm constitutes a more flexible 
composite of those presented in prior studies. To guard against low-level 
methodological biases, we systematically varied these parameters and 
controlled for them in the statistical models presented here. Second, the 
samples of languages included in previous studies have lacked control 
for structural/typological, genealogical, and areal biases. We address 
this point by selecting eight typologically maximally diverse languages 
from different parts of the world. Third, prior work has relied on larger- 
scale levels of analysis for matching, such as utterance or word levels, 
which may not be appropriate for morphologically complex languages. 
We therefore included a morpheme-level analysis to ensure that we were 
able to capture repetition of roots in addition to words. Fourth, longi-
tudinal changes in variation sets have most often been observed relative 

Fig. 8. ADS vs. CSS, words, fuzzy matching.  

Fig. 9. ADS vs. CSS, words, strict matching.  
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to the age of the child. However, age is not always a reliable indicator of 
linguistic development, particularly when comparing multiple children. 
We therefore compared the behavior of our algorithm across three 
distinct developmental indices, as well as a measure designed to capture 
any information shared between those indices. Fifth, no study to our 
knowledge has established an empirical baseline against which to 
measure the relative magnitude of the proportion of variation sets given 
the general statistical properties of a language. We created random 
versions of the original texts and compared the amount of repetition in 
each. Sixth and finally, no study to our knowledge has addressed how 
variation sets in CSS stack up to ADS, nor how this relationship plays out 
crosslinguistically. We therefore contrasted CSS and ADS for two lan-
guages which differ widely, both in terms of several typological pa-
rameters (see Appendix) and with respect to the longitudinal behavior of 
variation sets (Chintang and English). We discuss the consequences of 
each of these extensions in turn. 

Our composite algorithm detected variation sets in all of the lan-
guages in our sample. Moreover, we found that each of the parameters 
had relatively stable effects across languages. Larger windows and fuzzy 
matching produce larger proportions of variation sets. The results are 
largely consistent with those reported in prior studies. However, by 
including a more diverse array of languages, we uncovered some novel 
trends. Prior work has repeatedly found that languages either tend to 
decrease or stay the same over time with respect to the observed pro-
portion of variation sets. However, in the present sample two languages, 
Chintang and Turkish, revealed an unexpected developmental pattern\. 
For these languages, the prevalence of variation sets increases over time, 
both at the level of words and morphemes, and for both strict and fuzzy 
matching. This finding is even more surprising given that these two 
languages are among the most morphologically complex in our sample. 
Lexical roots are expected to be repeated if indeed the speech is repet-
itive. However, the morphological frame surrounding those roots can 
shift in a number of ways, some of which are obligatory given the 
interactional context (as in (2) above). There can even be morpho- 
phonological processes which alter morphs or obscure morphological 
boundaries. Yet the positive trend persists, even if we require strict 
matching over entire words (though somewhat less consistently for 
Chintang than for Turkish). 

These increasing trends clearly challenge the traditional explanation 
for the longitudinal trends of variation sets, which states that the amount 
of repetition is inversely related to the socio-cognitive aptitude of the 
child. Why then should these rates increase for Chintang and Turkish? 
There are several possibilities. 

The simplest and most practically oriented explanation is that these 
corpora cover the lowest age ranges of any in our sample. Perhaps 
speech patterns to the youngest children differ from those of interac-
tionally more engaged two- or three-year-olds. This answer could apply 
especially well to Chintang. In the Chintang community, when children 
are young, they are not taken seriously as conversational partners. As a 
result, they hear more speech directed to others than to themselves, at 
least until they demonstrate proficiency as speakers. Repetition in 
Chintang CSS might increase over time as caretakers begin to address the 
child more frequently, thus creating more occasions in which commu-
nicative success must be monitored and adjusted for. Perhaps, then, the 
diminishing repetition that has been observed for other languages is 
simply pushed further into development for children learning Chintang 
(an inverted-U trajectory). Interestingly, Grigonytė and Björkenstam 
(2016) report increasing rates of repetition between their first 
(0;6–0;11) and second (1;0–1;3) age bins for 3 out of the 10 languages 
they sampled for which such age ranges. However, unlike the trends 
demonstrated in the present paper, the three that they present destabi-
lize after the initial increase. This difference may be due to the finer- 
grained longitudinal analysis pursued here. 

Another possibility is that the positive trend truly relates to a special 
feature CSS in these languages. Perhaps repeating complex forms serves 
an increasingly important role as children discover more and more of the 

morphology of their language (especially when the language is 
morphologically very complex). That is, the adults may implicitly expect 
more finely articulated comprehension of complex forms, and so offer 
repetitions and reframings when perceived misunderstandings arise. 
Consider, for example, that in Chintang, verbal inflections for a single 
stem result in over 4800 different verb forms because of the language’s 
large number of affixes, and freedom in prefix ordering and verbal 
compounding in its grammar (Stoll, Mažara, & Bickel, 2017). While 
“good enough” comprehension (understanding the gist of a message) 
may suffice early on (as suggested by Frank et al., 2013), increasing 
demands on accurate interpretation of utterances could yield increased 
prevalence of variation sets. If this is true, then we have a straightfor-
ward prediction. The types of words that participate in variation sets 
should change as the child ages, with an increasing proportion of words 
with more complex morphology. Our present methods do not allow us to 
target the individual forms that lead to matches (and some comparisons 
between utterances yield many matches). We therefore leave it to future 
research to test this hypothesis. 

Our findings for Turkish are surprising for a different reason, namely, 
they are at odds with prior research. For example, Grigonytė and 
Björkenstam (2016) report decreasing proportions in their sample of 
Turkish CSS. For now, we can only speculate about the source of this 
difference. First, the corpora in their study cover an older age range 
(~2;0–4;4) than the corpus analyzed here (~0;7–3;0). As already 
mentioned with respect to Chintang, the trends we observe could cap-
ture a special stage in the development of parent-child interaction, one 
that is specific to morphologically complex languages. Second, 
Grigonytė & Björkenstam, 2016 use large bins when computing their 
average proportions per age group (covering 6–9 months a piece), which 
could obscure developmental trends that occur within those bins. A 
related issue is that Grigonytė & Björkenstam do not account for indi-
vidual differences in the behavior of the specific parent-child dyads or 
recording sessions. This additional lumping of data could also muddle or 
distort developmental trajectories. Our models explicitly account for 
such variability. Third, the corpus analyzed here is not only much larger 
in terms of the number of utterances analyzed, but also covers four times 
the number of children. It could be that the decrease observed by 
Grigonytė & Björkenstam arose from some idiosyncratic combination of 
features endemic to that sample. Fourth, and finally, at least one of the 
corpora used by Grigonytė & Björkenstam (Aksu; Slobin, 1982) contains 
both naturally occurring and experimentally targeted language (i.e., 
standardized comprehension questions). Those data are therefore not 
entirely comparable with the purely naturalistic-conversational data 
analyzed here. 

We also tested whether the proportion of variation sets depends on 
where we look – full words or morphemes. Comparing morphemes 
uniformly increased the estimated proportion of variation sets. This ef-
fect was much stronger in the fuzzy as opposed to the strict matching 
condition. In some cases, using morphemes instead of words also 
increased the strength of longitudinal trends. This was particularly true 
of Turkish and Yucatec. Importantly, the sharpening of the longitudinal 
trends in these two languages moved in opposite directions (increasing 
positive correlation for Turkish, negative for Yucatec) and held even 
with strict matching on noun/verb roots. The morpheme-level analyses 
thus reveal language-specific layers of repetition that are unavailable at 
the level of words, and which can be uniquely associated with strict 
repetition of lexical roots (as opposed to, e.g., fuzzy matching over 
inflectional morphology in whole words). For other languages, moving 
to morphemes reduced or even eliminated effects observed at the word 
level. This change was most pronounced in Sesotho. Perhaps entire 
words are repeated less and less often, while roots are repeated at steady 
rates, but in increasingly variable morphological contexts. The word- 
level analysis should then indicate change over development as a 
function of increasing morphological flexibility in the use of different 
roots, but that question lies far outside of the present study. Neverthe-
less, one thing is clear: the level of analysis at which one measures 
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repetition is crucial and must be considered in light of the properties of 
individual languages. 

Considering only the analysis of the true texts, languages also 
differed in how the choice of developmental index (age, MLU, diversity 
of vocabulary, or the information shared among them) related to 
changes in the proportion of variation sets. For example, in Chintang, 
age is the most reliable index for detecting change over development in 
each condition. MLU, on the other hand, shows no pattern at all. For 
Japanese, only diversity of vocabulary failed to produce any longitudi-
nal trends. More encouragingly, several of the languages showed 
convergent effects across all developmental indices. These include 
Turkish, Russian, and English. The fact that trends are discovered rela-
tive to each index, and that these trends are consistent in direction 
within each language, strongly supports the notion that degree of 
repetition in adult-child interactions depends on the linguistic ability of 
the child. But for many other languages, the effectiveness of any single 
index for detecting longitudinal trends varied both by language and 
condition. This point again underscores the necessity of applying a wide- 
ranging approach to the cross-linguistic analysis of variation sets. You 
have to know where to look, how to measure similarity, and how to 
measure development for each language independently. 

We further introduced a method for generating random texts which 
share the same underlying statistical properties of the true text. These 
random baselines were designed to test whether variation sets are sur-
prising at all, or simply a reflex of word or morpheme probabilities. 
Overwhelmingly, these baselines fell above the true estimates, meaning 
that for most languages in most conditions, speech was less repetitive 
than it could have been. We attribute this to the informativity of actual 
conversation. By not simply reproducing word probabilities in each ut-
terance (i.e., by systematically choosing words that are individually 
improbable), we increase the amount of information carried by the 
message; that is, we say something meaningful. On the other hand, 
repetition can be greater than the random baseline, in which case less 
probable words are selected repeatedly in sequence for true text relative 
to what would have been expected by chance. The most likely cause for 
this effect is a more even distrribution of tokens across types in the 
higher frequency registers. If there are more high frequency types to 
choose from, randomly constructed utterances will naturally be less 
similar (all else being equal). Whatever the cause, these analyses have 
revealed a new measure of repetition. The absolute value of the differ-
ence between the random and true estimate is a measure of redundancy. 
Positive differences between true and random estimates indicate su-
perabundance of repetition. This situation represents the strongest evi-
dence that CSS is overly repetitive. Negative differences between true 
and random estimates indicate the extent to which a text is hypo- 
redundant. Hypo-redundant texts that are closer to the random base-
line are more redundant, i.e., “repetitive” in the sense described above. 
The lower the difference, the more informative the speech. These esti-
mates can evolve over development, including the random baselines 
themselves. This perspective therefore adds a new perspective on the 
trustworthiness of developmental trajectories uncovered by automatic 
variation set extraction algorithms. If there is no difference in the trends, 
then the ostensible growth or reduction of repetition is most likely due to 
shifts in the frequency distribution of tokens in the text. 

We indeed found a few cases in which an otherwise reliable longi-
tudinal trend was in fact indistinguishable from natural changes in 
repetitiveness due to changes in the frequency profile of words/mor-
phemes. Inuktitut appeared to show a positive longitudinal trend for the 
PCA-derived index, but this trend mirrored almost exactly the increase 
observed for the randomized text. Hence, we should not attribute these 
changes to anything other than basic lexical distributions. One use for 
the random baseline is thus to weed out spurious correlations between 
repetition and development. 

We also found evidence of the converse situation: there were cases in 
which the longitudinal trends for true and randomized text differed, but 
no effect was observed for the true text alone. For example, with strict 

matching of morphemes, Yucatec showed no effect of MLU on its own, 
but did show an interaction between MLU and text type. Random text 
increased over time in variation set proportions, while true text did not. 
The result was an increase in the distance between the two, with the 
random baseline reaching values increasingly above those of the stan-
dard. By the logic presented above, even though the actual repetition has 
not increased in response to increasing MLU, the amount of redundancy 
has decreased. This insight is crucial: it means that sequential repetition 
alone is not the only meaningful dimension of variation sets. We must 
also consider redundancy in terms of violation of expectation. Specif-
ically, even if the rates of repetition are constant across samples, this 
constancy may be shaped by short-scale recurrence of lower-frequency 
items. This explanation implies that for such corpora, we should 
observe increasingly shorter chains of variation sets driven by increas-
ingly lower-frequency items. Our current approach does not allow us to 
measure chain length, though we note that these effects hold when 
window size (i.e., maximal chain length according to our algorithm) has 
been held constant. We leave it to future research to determine the root 
causes of these various types of null effect (null simple effect, but sig-
nificant with interaction; null interaction, but significant with simple 
effect). 

In our final analysis, we tested whether CSS is especially repetitive 
compared to ADS. Should we count variation sets among the distinctive 
features of adult-child interaction, at least in terms of their relative 
prevalence, or not? We compared two typologically distinct languages: 
English and Chintang. Our analysis revealed two important things. First, 
the longitudinal trends for Chintang gradually approximate the adult 
standard for all indices, but this is not true for English. For the latter, 
rates of repetition in CSS gradually decrease, while those for ADS rest 
substantially higher than even the earliest stages. Moreover, the differ-
ence in repetitiveness between English ADS and CSS is much greater 
than it is for Chintang, regardless of the developmental stage of the 
child. This could be due to a fundamental difference in average utter-
ance length between the corpora (Chintang ADS: mean words = 2.76, 
SD = 1.97; English ADS: mean words = 9.41, SD = 13.41). A qualitative 
examination of the BNC Spoken corpus revealed that the unit of 
chunking was longer than that used for Chintang, something closer to a 
turn than an individual utterance. For example, a single “utterance” 
could contain multiple sentences. However, Chintang is expected to 
have shorter utterances by word than English simply because English is 
morphologically more analytic. While we cannot definitively answer the 
question here, we emphasize the basic point that automatic detection of 
repetition is sensitive to both language-internal features, such as 
morphological complexity, and/or corpus-specific features, such as how 
utterances are chunked into transcription units. Second, both Chintang 
and English showed bigger differences between true and random esti-
mates for ADS than CSS. ADS is therefore more informative on average 
than CSS in these languages, despite the differences outlined above. This 
trend is consistent between languages, and in line with the expected 
decreases in repetition based on prior work on the assumption that less 
repetitive speech is more informative. Thus, repetition behaves in 
unique ways for CSS and ADS, both in the levels of pure repetition and 
the degree to which these levels of repetition are informative. Moreover, 
cross-linguistic differences suggest that the effects of repetition and 
redundancy may play out on different time scales for different lan-
guages. To test this possibility, we need corpora covering later stages of 
development (e.g., between the ages of 5 and 18+). 

While these results are compelling, our automated approach is not 
without its shortcomings. For example, we necessarily underestimate 
the true amount of repetition. We currently only measure whether an 
utterance belongs to any variation set. But any utterance may participate 
in several distinct variation sets within the same window. Consider the 
following simple sequence:  

1. A B C  
2. A D E 
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3. C D F 

Our proportional measure would say that 100% of the utterances 
belong to variation sets. But in actuality, each of the utterances belong to 
two variation sets (1 with 2 and 3; 2 with 1 and 3; 3 with 1 and 2), each 
of which centers on one of three elements (A, C, or D). The proportion of 
utterances as implemented here cannot capture this interweaving of 
repetition. Additional measures are therefore necessary. For example, 
one could calculate the average number of variation sets per utterance 
(in the above example, 2). This measure would capture the density of 
variation sets as opposed to their prevalence and therefore give a better 
impression of the network of repetitions encountered in CSS. Another 
option would be to identify variation sets through cluster analysis and 
then to count the number of clusters found in each session. 

Another source of underestimation comes from the fact that our al-
gorithm cannot capture phonologically obscure relationships between 
words or morphological roots. For example, repetition of radically 
suppletive forms, such as English go and went, would not register as a 
match. One way of handling this issue would be to apply the algorithm 
over lemmas (essentially words stripped of inflection; go and went share 
a lemma GO). However, there are two issues. First, lemmatizing the 
tokens presupposes that the child can connect these disparate surface 
forms already, and so pushes the question one step back. Second, lem-
matization itself is not straightforward for many languages. Consider 
Chintang, in which verbs can carry multiple, morphologically discon-
tinuous roots. Which one(s) should be built into the lemma? It is 
therefore unclear that any automated extraction algorithm could ac-
count for these relationships. Another way to approach this problem 
would be to examine just those sequences in which target suppletive 
forms are repeated. It is possible that these forms are linked by variation 
sets of a different kind, sets where the targets vary and the context re-
mains stable. In this case, local chains of varying suppletive forms would 
be attended by higher degrees of repetition in the embedding contexts. If 
most of the sentence is repeated, but the target forms are allowed to 
vary, the child may have an easier time connecting them. Similar 
mechanisms have been proposed for the bootstrapping of lexical cate-
gories under the label “frequent frames” (Mintz, 2003; Moran et al., 
2018). We leave it to future research to explore specifically whether 
phonologically divergent variants of the same underlying form can be 
learned through variation sets, or through some combination of varia-
tion sets and other statistical properties of text. 

The data themselves also limit the precision with which we can es-
timate the proportion of variation sets. What we refer to as utterances 
actually fall somewhere between a full turn at talking and a coherent 
syntactic unit. However, speech provides other cues to segmentation, 
namely, prosodic cues. Speech comes packaged in prosodically well- 
defined bursts known as intonation units (Du Bois, Schuetze-Coburn, 
Cumming, & Paolino, 1993; Chafe, 1994). Our current utterance units 
are typically longer than a single intonation unit. Hence, our units of 
comparison may be too large. As a result, we may omit relevant matches 
because they fall within our current utterance units, but would other-
wise be split among two or more intonation units. However, segmenting 
the corpora into more total units also increases the denominator of our 
critical proportion. It is therefore unclear whether the estimated pro-
portions would rise or fall, and whether these relationships would 
depend on other factors, such as the typological properties of the lan-
guage or whether we consider morphemes or words. 

Beyond the automatic variation set extraction algorithms and how 
they interact with morphological and lexical complexity, other variables 
may in general affect the proportions of utterances belonging to varia-
tion sets. For example, socially- or culturally-driven differences between 
speaker communities has been shown to be a significant determinant of 
variation sets. Tal, Arnon, Bertolini, and Kaplan (2018) find that chil-
dren learning English or Hebrew from high socio-economic status (SES) 
backgrounds receive more variation sets compared to children from low 
SES backgrounds. After controlling for the difference in the number of 

words, they find that higher SES language samples from English and 
Hebrew have statistically significantly higher proportions of variation 
sets than lower SES samples. However, in some of the cultures studied in 
this paper such differences are irrelevant. In Chintang for instance the 
population lives from subsistence farming and SES differences are not 
comparable to WEIRD cultures, as for instance, studied in Tal et al. 
(2018). 

Another factor to consider is how behavioral standards for adult- 
child interaction shape the prevalence of variation sets across cultures. 
Cultures differ enormously in how much and how caregivers commu-
nicate with children of different ages (Casillas, Brown, Levinson, & C., 
2020; Casillas, Brown, Levinson, & C., 2021; Cristia, Dupoux, Gurven, & 
Stieglitz, 2019; Keller et al., 2006; Lieven & Stoll, 2013; Ochs & 
Schieffelin, 1995). Moreover, cultures differ in their preferred models of 
discourse, which may impact the typical prevalence of variation sets. For 
example, Mayan languages have been documented to involve a high 
degree of full and partial repetition (Brody, 1986; Brown, 1999). 
Research into Mayan child-directed speech suggests that there are also 
developmental trends in this behavior. For example, K’iche’-speaking 
mothers repeat themselves more when talking to children, but they 
repeat things that others have said more when speaking to adults (Pye, 
1986). The prompting routines described above for Yucatec Maya also 
give way to higher degrees of partial or full repetition in the speech 
between adults, suggesting the possibility of a U-shaped development in 
the prevalence of variation sets. Going forward, computational ap-
proaches for identifying variation sets must consider the full scope of 
social, ethnographic, and discourse factors, as well as the relationships 
between child-directed and adult-directed speech, where sufficient 
documentation exists. 

6. Conclusion 

Variation sets are a ubiquitous feature of child-surrounding speech 
(CSS). Detecting these variation sets automatically has drawn much 
attention in recent years. Here we show through a myriad of automatic 
extraction algorithms and statistical analyses on a typologically maxi-
mally diverse sample of languages that variation sets in CSS can either 
increase or decrease in frequency as a function of the child’s age. 
Furthermore, the present study adds several new dimensions to consider 
in the analysis and interpretation of variation sets. 

First, we must consider carefully how a language is structured before 
submitting it to automatic analysis. Whereas morphologically analytical 
languages like English favor the repetition of whole words within 
varying phrasal or sentential contexts, synthetic languages like Turkish 
favor repetition of roots within varying morphological contexts. These 
differences affect our ability to detect repetition, but on a deeper level, 
they seem to correspond to real differences in how repetition manifests 
longitudinally. The fact that some morphologically complex languages 
in this study show increasing rates of repetition was entirely unexpected 
and deserves further scrutiny. We suspect that this increase is tied into a 
larger inverted-U developmental trajectory, but the answer will have to 
wait until we have sufficiently large and longitudinally broad cross- 
linguistic corpora. 

Second, we cannot simply treat age as the standard measure of lin-
guistic aptitude, nor the measure that is most appropriate for any given 
sample of children, or any language for that matter. We have tested two 
additional measures, MLU and lexical/morphological diversity, but this 
hardly exhausts the full gamut of developmental indices. Future 
research should continue to look for convergence across multiple 
developmental indices before drawing specific conclusions about how 
variation sets change in response to the growing linguistic aptitude of 
the child. 

Third, random baselines must be established against which both 
point estimates and developmental trajectories can be compared. The 
difference in repetitiveness between random and true text offers a new 
perspective on variation sets: when true and random estimates are 
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closer, the speech is more redundant given the underlying frequency- 
rank distribution of words/morphemes. Redundancy and repetition go 
hand in hand, as both mark pockets of less informativity. In other words, 
they are two sides of the same coin. However, in some cases one is easier 
to detect than the other with our algorithm. The relative usefulness of 
each thus needs to be evaluated further using different algorithms, 
developmental indices, and languages. At a more practical level, we 
have introduced only one approach for generating random text, which 
involves randomly sampling from an empirically derived frequency 
distribution per text. But there are many other possible techniques, such 
as randomizing across multiple levels (characters within words, words 
within utterances, utterances within texts, and so on). Based on the 
present results, we suggest that the most desirable approach would be 
one that guarantees a fixed direction of divergence (positive or negative) 
in the proportion of variation sets between true and random text. That 
way, we have a set scale against which to judge the relative effect size. 

Finally, our analysis showed that we must compare the behavior of 
ADS and CSS, and that this comparison must include some form of 
random baseline. We assumed that CSS would gradually approximate 
ADS, which was true for Chintang but not English. This difference could 
be due to several factors, including how speech was transcribed and 
segmented. But one fact is clear: ADS was reliably less redundant than 
CSS in both languages. The scale of this difference offers another 
aggregate view of the degree of repetition in CSS. Notably, this differ-
ence matches prior findings, and conflicts with the patterns of pure 
repetition in CSS. Further work should expand this style of analysis to 
new languages and new corpora of the languages studied here, 

especially corpora with a broader coverage of older age ranges. In this 
way, we can begin to understand the possible effects of typological 
features and transcriptional conventions. 

We propose that by considering these many additional dimensions, 
the automatic detection of variation sets will benefit both in terms of 
precision and interpretability. Furthermore, our findings are relevant for 
theory in two ways. First, a comprehensive theory of variation sets must 
explain why repetition decreases for some languages but increases for 
others over time. Second, the property of redundancy must be consid-
ered in complement to pure repetition. By hypothesis, if variation sets 
are prevalent, then less information is transmitted on average per ut-
terance. With these additional tools, we can sharpen our understanding 
of CSS and how it supports language acquisition across languages and 
cultures. 
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Appendix 1: Typological parameters and feature values for the languages in our sample based on Stoll and Bickel (2013)  

Language Verb 
position 

Verbal 
synthesis 

Nominal 
synthesis 

Syncretism Verb 
agr. 

Possessive 
agr. 

Case A. 
vs P. 

Agr. split 
ergative 

Case split 
ergative 

Polyexponence Inflectional 
compactness 

Chintang V = 3 High 2 Some Some Some Some Low Low Some Distributive 
English V = 2 Low 1 Some Some Some None Low Low Some Cumulative 
Inuktitut V = 3 Medium 3 Some Some Some Some Low High Some Distributive 
Japanese V = 3 Low 1 None None Some Some Low Low Some Cumulative 
Russian V = 2 Low 2 Some Some None Some Low Low Some Cumulative 
Sesotho V = 2 Low 1 Some Some None None Low Low Some Distributive 
Turkish V = 3 Medium 3 None Some None Some Low Low Some Separative 
Yucatec Free Low 2 None Some Some None Medium Low None Separative  
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